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In the intracellular environment, signaling takes place in a nonideal environment that is spatially heteroge-
neous and that is noisy, with the noise arising from the low copy numbers of the signaling molecules involved.
In this paper, we model intracellular signaling pathways as stochastic reaction-diffusion processes and adapt
techniques commonly used by physicists to solve for the spatiotemporal evolution of the signaling pathways.
We then apply it to study two problems of relevance to the modeling of intracellular signaling pathways. First,
we show that, in the limit of small protein diffusion which is typically the case for proteins in the cytosol
crowded by other macromolecules, the extent of diffusion control, in the transient regime, on reactions is
greater than previous predictions. Second, we show that the presence of scaffold proteins can modify the
phosphorylation activity of a mitogen-activated protein kinase cascade, and explain how this activity is modu-
lated by the scaffold protein concentration.
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I. INTRODUCTION

At the dawn of the twenty-first century, dramatic advances
in experimental methodology in genomics and molecular bi-
ology have enabled us to probe the structure and function of
living organisms to unprecedented levels of resolution. This
has, however, led to a deluge of data. Analysis of this data to
understand how genes and proteins work collectively to con-
trol cellular function has led to intensive use of mathematical
and computational techniques both for modeling and extract-
ing information and knowledge from the raw data resulting
from high-throughput experiments. To this end, there is in-
creasing interest in adopting a systems-level approach to
model �and ultimately predict� the behavior of biological
systems. The goal is to use a quantitative and integrative
approach to model the complex biochemical reactions and
dynamic influence of cellular networks to understand cellular
behavior in its normal and diseased states. Quantitative mod-
els are essential for understanding the dynamics of intracel-
lular signaling pathways, given the inherent complexity of
the components and their network architecture. However, ex-
isting models of intracellular signaling pathways are rather
restrictive. To a large extent, the focus has been on using
deterministic rate laws which has at its core the law of mass
action, an empirical law relating reaction rates and molecular
concentrations that are treated as continuous functions of
time. The chemical components are assumed to be located in
a homogeneous environment �i.e., a well-stirred reactor�
thereby neglecting spatial aspects. This is of course very far
from reality especially when one considers the structural or-
ganization of the intracellular environment. A high degree of

macromolecular crowding as well as the presence of endog-
enous obstacles in cellular media have important thermody-
namic and kinetic consequences especially affecting diffu-
sion processes �1�. For example, the diffusion of
macromolecules in the cytoplasm can be 5 to 20 times lower
than in saline solutions �2,3�. Furthermore, many important
intracellular processes depend on spatial heterogeneity,
among which is morphogenesis, chemotaxis, and local signal
processing in neurons �4�. This therefore makes the validity
of a continuous, deterministic approach in modeling intrac-
ellular signaling pathways that neglects spatial heterogeneity
even more tenuous.

Incorporating heterogeneity into the modeling process
highlights another key assumption inherent in the determin-
istic approach. This assumption states that every biomolecu-
lar species is assumed to be present in such copious quanti-
ties that their temporal fluctuations can be considered
negligible, and thus a deterministic treatment is appropriate.
Under in vivo conditions, the low copy numbers of some of
the components that make up the pathway give rise to non-
negligible fluctuations, resulting in dynamics that is inher-
ently stochastic. �Indeed, these intrinsic fluctuations have re-
cently been measured using fluorescent probes �5–7�.� This
stochasticity manifests itself as a source of noise in experi-
mental measurements of the species concentrations or other
measurements derived from them �8,9�. The implications of
stochasticity resulting from the small number of participating
molecules in cellular processes have been well-studied �10�.
For example, there have been theoretical studies �11–13� of
how the presence of noise modifies the switching properties
of ultrasensitive signaling cascades �such as enhanced sensi-
tivity, reduction in the sharpness of thresholding responses,
etc.�, and proposals of novel phenomena such as stochastic
focusing in signaling �14,15� that have eluded deterministic
models. In principle, an exact way to quantitatively incorpo-
rate stochasticity in models of intracellular signaling path-
ways that takes into account the discrete nature of the mol-
ecules involved is to use chemical master equations �16�.
They describe the dynamical changes in the probabilities of
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each species having a particular number of molecules at a
particular time, with the transition rates dependent on the
biochemical kinetics. Numerically evaluating trajectories of
the chemical master equation is in principle a computation-
ally intensive procedure. However, there are Monte Carlo
techniques to speed up the process �17�. Recently, approxi-
mate methods have also been developed to accelerate the
Monte Carlo techniques, making them even more efficient,
though at the price of sacrificing accuracy �18–21�. �Accu-
racy in this case refers to the lack of discrepancy between the
probability of generating the solution by the approximate
techniques and the probability assigned by the chemical mas-
ter equation.�

There have also been attempts to include spatial aspects
of cellular signaling such as incorporating the effects of mo-
lecular diffusion and other spatial variations in species con-
centration into stochastic biomolecular reactions. A common
approach is to subdivide the cytosolic volume into a spatial
mesh, and then model molecular diffusion as random jump
processes of the molecular species from one mesh point to an
adjacent one �22,23�. The resulting set of stochastic reaction
and jump �i.e., diffusion� processes will then form the quan-
titative framework that overcomes the limitations posed by
the deterministic approach. A number of recently published
investigations attempt to address these issues with bacterial
chemotaxis being the main focus. Levin et al. �24� and
Shimizu et al. �25� have investigated both the diffusive prop-
erties of signaling molecules and the implications for the
spatial organization of receptor arrays. Bhalla �26� examined
how diffusion and subcellular compartmentalization influ-
ences the underlying signaling processes and gives rise to a
diversity of signaling outcomes which may include washout
of the signals, signal amplification, and conversion of steady
responses to transients. Andrews and Bray �27� have devel-
oped techniques for simulating biochemical reaction net-
works with a spatial resolution that is accurate to nearly the
size scale of individual molecules and highlighted the capa-
bilities of this approach by simulating simple biomolecular
reactions. Elf and Ehrenberg �28,29� have adapted the Monte
Carlo techniques described above to efficiently sample tra-
jectories of reaction-diffusion master equations and applied it
to understand the separation of bistable biochemical systems
into spatial domains of opposite phases. Finally, Metzler �30�
looked at how spatial fluctuations play a non-negligible part
in cellular genetic switching processes. We note, however,
that whatever the choice of algorithm used to model the sto-
chastic spatiotemporal variations of the concentrations of
signaling components in the intracellular environment, simu-
lating the dynamics of this large number of stochastic
reaction-diffusion processes is computationally very de-
manding even on massively parallel clusters that are widely
available today.

In this paper, we first describe how intracellular signaling
pathways can be modeled as a set of stochastic reaction-
diffusion processes that reflect in vivo conditions. We then
describe an algorithm to simulate these processes efficiently.
The details of this algorithm will be discussed in Sec. II,
where we also describe tests to check the accuracy and effi-
ciency of the algorithm. In Sec. III, we apply the algorithm
to investigate two problems relevant to intracellular signal

transduction. First, we calculate the extent of diffusion con-
trol on biomolecular reactions in the limit of small biomo-
lecular diffusion, which is typically the case for proteins in
the cytosol crowded by other macromolecules. Second, we
calculate quantitatively how the presence of scaffold proteins
modify the phosphorylation activity of a mitogen-activated
protein kinase signaling cascade. Finally, in Sec. IV, we
present our conclusions.

II. METHODS

A. Definitions

We first introduce the notations that will be used through-
out this paper. Let the intracellular signaling pathway we
want to model consist of N species. The concentrations of
these species are denoted collectively by the vector

X� �r�,t� = �X1�r�,t�, . . . ,XN�r�,t�� . �1�

The coordinates denote spatial location r��� and time 0
� t�T. Here, � is the modeling spatial domain, which could
denote the three-dimensional cytosolic volume or the two-
dimensional membrane surface, and T is the modeling pe-
riod, i.e., the time up to which the pathway is to be modeled.
For modeling convenience, we work with dimensionless
quantities by an appropriate choice of units, i.e., length in
units of 1 �m and time in units of 1 min. The components
Xi’s are therefore measured in units of �A����−1, where A is
Avogadro’s number and ��� the volume of �. This choice
ensures that a value for Xi of, say, 10, can be taken to mean
either that the concentration of the ith species is 10 or that
there are 10 molecules of the ith species present in �. Here-
after, throughout this paper, we will use the terms concentra-
tion and number of molecules interchangeably.

In addition, molecules of the ith species are assumed to be
diffusing in the cytosolic volume with a diffusion coefficient
of Di, i=1, . . . ,N, measured in units of 1 �m2/min. For the
purpose of this paper, the Di’s are assumed to be constant in
space and time although, in general, they need not be. Recent
progress in imaging techniques has made it possible to mea-
sure the diffusion coefficients of proteins in the cytosol ex-
perimentally �2,3� with values in the order of 10 to 103.

Members of each reacting species may interact with one
another via M elementary reactions, denoted by the vector

R� = �R1, . . . ,RM� . �2�

These reactions are completely specified by two pieces of
information, the stoichiometric matrix � ji that specifies the
change in the number of Xi molecules per jth reaction,
j=1, . . . ,M, i=1, . . . ,N, and the rate constants kj, j
=1, . . . ,M, that specify how fast the jth reaction proceeds.

Thus given an initial value for the concentrations, Xi�r� , t
=0�, i=1, . . . ,N, r���, the task of quantitatively modeling
the intracellular signaling pathway can be formulated as

solving for the spatiotemporal dynamics of X� subject to the

reactions R� and molecular diffusion specified by the Di’s.
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B. Algorithm

In our algorithm, the modeling domain � is discretized
into a Cartesian spatial mesh. In this paper, for simplicity, we
will let � be the two-dimensional unit square �0�x�1,0
�y�1�, and discretize it into Nx�Ny rectangular mesh
points, each of dimensions Nx

−1�Ny
−1. We will also impose

periodic boundary conditions. Of course, to realistically
model the dynamics of intracellular signaling pathways, we
will have to consider the three-dimensional cytosolic volume
with the appropriate boundary conditions at the two-
dimensional cellular membrane. However, preliminary work
on a simple three-dimensional system leads us to the view
that we should not expect the conclusions in this paper to
change if a three-dimensional domain is used, nor if more
realistic boundary conditions are used. The mesh points are
then populated with initial concentrations of the reacting spe-
cies whose spatial distribution will reflect the spatial hetero-
geneity of the problem at hand. In each mesh point, the set of

M reactions, R� , is carried out independently. Because the
reactions in each mesh point involve only species residing in
that mesh point, we can assume that there are N�Nx�Ny
distinct species, and rewrite Eq. �1� notationally as

X� �t� = �Xi�x,y,t�� ,

i = 1, . . . ,N, x = 1, . . . ,Nx, y = 1, . . . ,Ny . �3�

Molecular diffusion is modeled as a set of random jump
processes from mesh points to adjacent ones �22,23,28,29�.
The rate constant k̃i for one of these jump processes to hap-
pen for a molecule of the ith species is given by

k̃i =
Di

�2d�l2 , �4�

where l is either Nx
−1 for jumps in the x-direction or Ny

−1 for
jumps in the y-direction, and d is the dimensionality of the
modeling domain � �d=2 for the unit square�. Equation �4�
follows from a discretized version of Fick’s law, which states
that the local flux of a diffusing species �i.e., flow per unit
time per unit area� is proportional to the local gradient of the
concentration of that species and the diffusion coefficient.

There are now a total of �M +2dN��Nx�Ny processes,
corresponding to M �Nx�Ny reactions and 2dN�Nx�Ny
jump processes. �The factor of 2d arises because each mesh
point has 2d nearest neighbors.� We can rewrite Eq. �2� no-
tationally as

R� = �Rj�x,y�;R� i�x,y�� ,

i = 1, . . . ,2dN, j = 1, . . . ,M ,

x = 1, . . . ,Nx, y = 1, . . . ,Ny , �5�

where R̃ denotes random jump processes emulating diffusion
described above.

With this formalism, the task posed above can be refor-

mulated as solving for the evolution of X� of Eq. �3�, subject

to the set of reaction and jump �i.e., diffusion� processes, R�

of Eq. �5�. If this evolution can be performed stochastically,
i.e., by using an approach that incorporates the small number
of molecules involved, such as Gillespie’s algorithm
�17–19,28,29�, then the two limitations of the deterministic
approach raised in the Introduction will be addressed.

In this paper, we propose a hybrid approach that will al-
low for more efficient simulation of the large set of reaction-
diffusion processes. By hybrid, we mean that either a sto-
chastic or a deterministic treatment will be applied subject to
criteria determined dynamically in the course of the spa-
tiotemporal evolution of the system. First, we compute the
propensity functions

a��t� = �aj�X� �t���, j = 1, . . . ,�M + 2dN� � Nx � Ny �6�

for every process in Eq. �5�. The quantity aj�X� �t���dt, for
small dt, is the probability that the jth process will occur in
the time interval from t to t+dt. For example, consider the
simple process of two monomers, X1 and X2, reacting at a
rate k to form a dimer X3. The propensity function for this
process is

a�X1�t�,X2�t�� = kX1�t�X2�t� . �7�

For fixed k, the propensity a is directly proportional to the
product of the number of molecules of X1 and X2. When
there are only a few molecules of X1 and X2 present, dimer-
ization is less likely to occur. This likelihood increases with
more molecules of X1 and X2 present. Similarly, for a fixed
number of molecules X1,2, the propensity a is directly pro-
portional to the rate k. When the rate of the reaction is small,
dimerization is less likely to occur. This likelihood increases
with a higher rate of dimerization. Thus processes with small
propensities occur more rarely than processes with large pro-

pensities. It is then natural to partition the set of processes R�

into two subsets—those with small propensities and those
with large propensities. Exactly what is meant by small or
large and how this partitioning is implemented will be dis-
cussed below. Those processes with small propensities can
then be solved accurately using a stochastic approach such as
Gillespie’s algorithm �17–19�. We can then take advantage of
those processes with large propensities and solve them using
a deterministic approach. These kinds of “hybrid” algorithms
have been proposed �21,31,32� and implemented �33� previ-
ously. We note, however, that only reactive processes within
a homogeneous well-stirred environment in conformance
with the assumptions on which Gillespie’s algorithms is
based on were considered, i.e., the “hybridization” was ap-
plied only to temporal updates of the species concentrations.
The main contribution of our algorithm is to consider the
addition of diffusion to this hybridization, thereby allowing
for hybridization in both temporal and spatial updates.

The partitioning proceeds as follows. The jth process is
sorted into the subset for processes with small propensities
�the “small-propensity-subset”� when

aj � � max�a�� . �8�

The parameter 0���1 is a user-specified parameter of our
hybrid algorithm. A value of �=1 sorts all processes into the
small-propensity-subset and hence makes the algorithm
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solve all processes using a stochastic approach. On the other
hand, a value of �=0 sorts all processes into the large-
propensity-subset and hence makes the algorithm solve all
processes using a deterministic approach. Thus the parameter
� can be thought of as a tuning parameter that continuously
tunes the species concentrations from being solved fully de-
terministically �i.e., which is efficient but not necessarily ac-
curate�, to being solved fully stochastically �i.e., which is
accurate but not necessarily efficient�. The exact amount of
this tradeoff between efficiency and accuracy will depend on
the specific problem and has to be specified by the user. For
example, consider the example of a system of reactions in-
volving the turnover of proteins and mRNAs. The turnover
rates of the protein species are of the time scale of hours and
those of the mRNA species are of the time scale of minutes.
However, the protein species are present in copy numbers on
the order of, say, hundreds, whereas the mRNA species are
present in copy numbers on the order of unity. Thus the
propensities for the mRNA turnovers are approximately of
the same order of magnitude as those for protein turnovers.
Hence it is possible that any choice of ��0 will result in
some of the mRNA turnovers being partitioned into the
large-propensity-subset, resulting in some mRNA turnovers
being solved deterministically even though their copy num-
bers are of the order of unity. To prevent this from occurring
in the algorithm, one solution is to “flag” particular reactions
and explicitly “force” them to be solved deterministically or
stochastically at all times. For example, the mRNA turnovers
may be flagged to be partitioned into the small-propensity-
subset to be solved stochastically at all times. However, the
proper partitioning of systems exhibiting “stiffness,” i.e.,
systems whose components exhibit vastly different concen-
trations or vastly different time scales, is an active area of
research. �21� The effect of choosing a value of ��0,1 on
the species concentrations is shown in Fig. 1. Some time
intervals of the dynamics are solutions of a deterministic
approach; these intervals show smooth concentration
changes and exhibit small fluctuations. Other intervals are
solutions via a stochastic approach that show large fluctua-
tions. It is also apparent from the figure that those time in-
tervals corresponding to deterministic solutions being used
are characterized by steep concentration gradients which can,
intuitively, be thought of as being proportional to the propen-
sities �though not strictly valid in multispecies and nonlinear
reactions�. In this sense, our hybrid algorithm can also be
thought of as implementing partitioning based on the steep-
ness of the concentration gradients, with the parameter �
specifying the steepness threshold. In the appendixes, a
pseudocode outline of the algorithm is presented, as well as a
discussion on the possible sources of error.

C. Example: A diffusing-decaying-dimerizing system

We now apply our hybrid algorithm to solve an example
system in order to illustrate its working properties. The ex-

ample system is a set consisting of particles undergoing
diffusing-decaying-dimerizing processes. �The same system
but without diffusion was used as a test case in previous
studies of approximate stochastic algorithms �18�.� In this
example system, an unstable monomer X1 is simultaneously
undergoing three competing processes:

�1� decaying at a rate k1: X1 ——→
k1

�,
�2� dimerizing to form an unstable dimer X2 at a forward

rate k2 and a backward rate k3, X1+X1�
k3

k2

X2, and

�3� diffusing with diffusion coefficient D1.

In addition, the unstable dimer X2 stablizes to the stable con-

formation X3 at a rate k4, X2 ——→
k4

X3, and both dimers X2
and X3 are also diffusing with diffusion coefficients D2 and
D3. The rates and diffusion coefficients used in this example
are summarized in Table I.

Initially, the X1 monomers are localized in a central region
in the mesh, and there are no X2 nor X3 dimers. In Fig. 2, the
time series of the total concentration of the dimer X2 in the
whole spatial mesh is plotted. It accumulates from zero,
reaches a maxima, and then decays �to form the stable X3�.
Several solutions are shown: the fully deterministic solution
��=0�, the fully stochastic solution ��=1�, and hybrid solu-
tions at �=10−3, 10−2, and 10−1. One peculiar property of this

FIG. 1. A schematic illustrating how a hypothetical species con-
centration X varies with time t using our hybrid algorithm. Those
time intervals indicated by the words “stochastic” mean that, in
those intervals, the propensity for the reaction that involves species
X satisfies Eq. �8� in the text, i.e., a stochastic approach is used,
resulting in the characteristic large fluctuations. Conversely, those
time intervals indicated by the words “deterministic” mean that, in
those intervals, the propensity for the reaction that involve species
X violates Eq. �8� in the text. In this case, the concentration X is
solved by a deterministic approach, resulting in the smooth evolu-
tion without fluctuations.

TABLE I. Rate constants and diffusion coefficients in dimensionless units used in simulating the
diffusing-decaying-dimerizing system.

k1 k2 k3 k4 D1 D2 D3 Nx Ny 	t

1 0.002 0.5 0.04 0.1 0.1 0.1 100 100 10−3
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example system is that concentrations of the dimers X2 and
X3 obtained fully deterministically differ from that obtained
fully stochastically �18�. Thus this example system offers an
opportunity to allow us to observe how this error varies in
the hybrid regime with intermediate values of �. The figure
shows that the concentration obtained by the hybrid algo-
rithm is bounded by both the concentrations obtained deter-
ministically and stochastically.

In Fig. 3, spatial snapshots of the concentrations fields for
species X1 and X3 are shown at several times. The monomer
X1 is seen to diffuse outwards from the central region. How-
ever, it is evident from panel �b� that, in addition to outward
spreading, localized stochastic processes are taking place �re-
sulting in isolated dark spots in the snapshot, denoting low
concentrations, scattered around the white background, de-
noting high concentrations�. The dimer X3 is also seen to be
spreading outwards, but in a very inhomogeneous manner.
This spatial inhomogeneity is the result of stochastic pro-
cesses taking place. In general, the presence of deterministi-
clike diffusion and stochasticlike fluctuations in the same
dynamics is a hallmark of our hybrid algorithm.

D. Accuracy and efficiency

We now discuss how the accuracy of the algorithm scales
with the parameter �. We use the diffusing-decaying-
dimerizing system as a test case using two metrics to quan-
tify accuracy. First, the relative error of the mean of the ith
species concentration is computed with respect to the con-
centration obtained from a fully deterministic approach,


i,mean = � 	�Xi�x,y,t;��
 − �Xi�x,y,t;� = 0�
�Xi�x,y,t;� = 0�

� . �9�

The � denotes sum over all mesh points, i.e., �x=1
Nx �y=1

Ny . The
angle brackets 	·
 denote averaging over a large set of real-

izations obtained with different random seeds. Note that the
error is, by definition, zero at �=0. In Fig. 4, the value of

mean for the dimer X3 is shown at time t=20 when the sys-
tem has reached steady state. It remains at approximately

FIG. 2. Dynamics of the total concentration of the dimer X2

summed over the domain vs time t for several values of �, namely
�=0 �corresponding to a fully deterministic solution, dashed line�,
�=10−3, 10−2, and 10−1 �corresponding to hybrid solutions�, and �
=1 �corresponding to a fully stochastic solution, solid line�. The
concentration obtained by the hybrid algorithm is bounded by both
the concentrations obtained deterministically and stochastically. All
realizations use Nx=Ny =50 and 	t=10−3. In addition, for ��0, the
realizations have been averaged over 100 sets of simulations started
with different random seeds.

FIG. 3. Snapshots illustrating the spatiotemporal dynamics ob-
tained from our hybrid algorithm. The concentration fields of the
monomer X1�x ,y , t� and dimer X3�x ,y , t� are plotted for times �a�
t=0.1, �b� t=0.6, and �c� t=4, �d� t=10, respectively. The reactant
X1 is initially localized at the center of the domain and is seen to
diffuse outwards until it becomes more or less homogeneous, with
sporadic localized fluctuations, resulting in isolated dark spots in
the snapshot �denoting low concentrations� scattered around the
white background �denoting high concentrations�. The dimer X3,
initially at zero concentration everywhere, grows in a random and
inhomogeneous manner, also with sporadic localized fluctuations.
The simulation was performed with Nx=Ny =50, 	t=10−4, and �
=10−2.

FIG. 4. The relative error 
3,mean of the mean concentration of
the dimer X3 vs the parameter �, calculated using Eq. �9� in the text.
It increases with increasing �. The mean at each � is calculated over
100 realizations started with different random seeds.
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zero up to about ��10−3, at which point it increases mono-
tonically to its maximal value at �=10−1.

A second metric used is the relative error of the variance
of the ith species concentration computed with respect to the
variance obtained from a fully stochastic approach,


i,variance = ��2�Xi�x,y,t;��� − �2�Xi�x,y,t;� = 1��
�2�Xi�x,y,t;� = 1��

� ,

�10�

where the variance function is

�2�Xi�x,y,t;��� = 	��Xi�x,y,t;���2
 − 	�Xi�x,y,t;��
2.

�11�

In Fig. 5, the relative error for the variance of the concentra-
tion of the dimer X3 is shown at time t=20 when the evolu-
tion has reached steady state. The error is, by definition, zero
at �=1. It then increases as � decreases, up to unity at �=0
�since there, the concentration is obtained deterministically
and hence does not exhibit any fluctuations�.

Thus the hybrid algorithm exhibits a tradeoff between ac-
cumulating errors in the mean of the concentrations and in
the variance of the concentrations. The parameter � can then
be interpreted as quantifying this tradeoff. In this sense, there
is no “best” or “optimal” choice for the value of the param-
eter �. All values of � between zero and unity yield valid
solutions to the hybrid algorithm subject to this tradeoff.

Finally, we quantify the efficiency of the hybrid algorithm
using the speedup number 
, which we define to be the wall
clock time taken to complete the fully stochastic evolution
divided by the wall clock time taken to complete the hybrid
evolution. A value of 
=1 indicates no speedup. A value of

�1 is desirable. In Fig. 6, the speedup 
 is plotted for
simulations performed on the diffusing-decaying-dimerizing
system. A speedup of 
�8.5 is attained at �=10−3. This is
very close to the maximal speedup possible, 
=9 �i.e., the
speed of solving the system fully deterministically�. For �
�10−3, the speedup actually decreases, presumably owing to
computational overheads incurred in the partitioning of the

processes in a situation when most if not all of them will be
sorted into the large-propensity-subset to be solved determin-
istically anyway. It is also interesting to observe that a por-
tion of the curve, 10−1���1, exhibits “speeding-down”
with 
�1. This indicates that the hybrid algorithm in this
regime is less efficient than the fully stochastic one. This can
be attributed again to computational overheads incurred in
the partitioning in a situation when most if not all of the
processes will be sorted into the small-propensity-subset to
be solved stochastically anyway.

The speedup curve, together with the error curves for the
concentration mean and concentration variance, indicate that
a value of � lying between 10−3 and 10−1 is ideal for carrying
out hybridization for this particular system. For values of �
less than 10−3, no changes to the mean �and the variance, to
a lesser extent� are observed, indicating that ��10−3 is the
“most deterministic” extreme of the hybridization. For val-
ues of � greater than 10−1, no changes to the variance and the
mean are observed, indicating that ��10−1 is the “most sto-
chastic” extreme of the hybridization.

III. RESULTS

A. Diffusion-controlled reactions

In this section, we study a simple diffusion-controlled re-
action that will highlight the utility of our hybrid algorithm.
Biochemical reactions that are modulated by the diffusion of
the reactants are important in several aspects of signaling,
such as ligand-receptor interactions �34�, receptor-kinase in-
teractions �35�, catalysis by localized enzymes �36�, as well
as protein localization within scaffold complexes �to be dis-
cussed in the following section�. We start with a brief over-
view of the theory of diffusion-controlled reactions �37,38�.

FIG. 5. The relative error 
3,variance of the variance of the con-
centration of the dimer X3 vs the parameter �, calculated using Eq.
�10� in the text. It increases with decreasing �. The variance at each
� is calculated over 100 realizations started with different random
seeds.

FIG. 6. Speedup 
 measured by the ratio of the wall clock time
taken to complete the fully stochastic dynamics of the diffusing-
decaying-dimerizing system to the wall clock time taken to com-
plete the hybrid dynamics of the same system, vs the parameter �.
The speedups at each � are averaged over 100 simulations started
with different random seeds. The bottom dashed line is the refer-
ence 
=1 line that indicates performance on par with a fully sto-
chastic dynamics �i.e., no speedup�. The top dashed line indicates
performance that is on par with a fully deterministic dynamics �i.e.,
maximum speedup possible�.

CHIAM et al. PHYSICAL REVIEW E 74, 051910 �2006�

051910-6



Consider, for simplicity, the formation of a dimer X3 from
its two constituent reactants, X1 and X2,

X1 + X2�
kb

kf

X3, �12�

where kf and kb are the forward and reverse rate constants. It
is implicitly assumed that Eq. �12� is an approximation to a
more complex underlying process involving two �or more�
steps,

X1 + X2�
db

df

X4�
rb

rf

X3. �13�

Here, df and db are the rates of formation and dissolution of
an intermediate encounter complex X4, and rf and rb are the
forward and reverse rate constants for the encounter complex
to dimerize. The encounter complex is formed temporarily
whenever a molecule of X1 wanders by random walk to
within an encounter distance R of a molecule of X2, and vice
versa. �In most cases neglecting interactions, the encounter
distance is simply the sum of the radii of the molecules of X1
and X2, i.e., the closest distance that a molecule of X1 and a
molecule of X2 can get together before dimerization occurs.�
Therefore the rates df and db are related to the diffusion
coefficients D1 and D2 for X1 and X2, respectively �37,38�,

df = 2�D1 + D2� , �14�

db = 2�D1 + D2�R−2. �15�

By assuming that the concentration of the encounter complex
X4 is small compared to those of the reactants and product,
i.e., that it is at quasi-steady-state, then it can be shown that
Eq. �12� is identical to Eq. �13� when �37,38�

kf =
dfrf

db + rf
, �16�

kb =
dbrb

db + rf
. �17�

If in addition

� 

db

rf
� 1, �18�

then kf �df and the dimerization is said to be diffusion-
controlled �i.e., where reactant diffusion is so slow that it
completely determines the reaction rate�. Conversely, if �
�1, the dimerization is said to be reaction-or activation-
controlled �i.e., the reaction rate is fully determined by an
activation energy barrier making reactant diffusion irrel-
evant�.

It is common to use Eqs. �12�, �16�, and �17� as a theo-
retical model for reaction-diffusion processes �35� as it is
computationally less expensive to solve. However, in this
section, we show that this theoretical model does not yield
the correct concentrations in the transient regime by explic-
itly solving for the stochastic reaction-diffusion processes us-
ing our hybrid algorithm. We are interested in the diffusion-
controlled regime, i.e., at small values of �. One scenario
where this occurs is in scaffold protein complexes, which
typically have large molecular weights and thus small diffu-
sion coefficients. Another scenario involves the diffusion of
proteins in the cytosol which is crowded with other large
molecules such as microtubules, actin filaments, and or-
ganelles �1�. In this scenario, the mean free paths of the
proteins are reduced, resulting in a smaller diffusion coeffi-
cient.

We implement the dimerization

X1 + X2�
rb

rf

X3 �19�

with forward and reverse rate constants rf and rb, respec-
tively, on the unit square with a spatial mesh of Nx=Ny
=100 points in each direction. We let the species diffuse with
diffusion coefficients D1, D2, and D3, respectively. The en-
counter distance is the dimension of one mesh point, R
=Nx

−1=Ny
−1, i.e., a molecule of X1 will only react with a mol-

ecule of X2 when they are both in the same mesh point. The
rate constants and diffusion coefficients used are summarized
in Table II. Initially, X1 and X2 molecules are randomly dis-
tributed in the spatial mesh, and there are no X3 molecules.

In Fig. 7, snapshots of the spatiotemporal evolution of the
dimer concentration field X3 at several instances of time t
averaged over 100 sets of simulations started with different
random seeds are shown. The “coarsening” observed is rep-
resentative of the effects of reactant diffusion.

The time evolution of the total concentration of the dimer
X3 in the whole mesh is then plotted vs time t and compared
with the result obtained from solving Eqs. �12�, �16�, and
�17�. In Fig. 8, the concentration profiles from our hybrid
simulations and from the theoretical model are plotted. In
addition, another set of profiles for �=1 is also shown for
reference.

We find that the concentration profile for �=0.1 from our
hybrid simulations does not agree with the theoretical model
at early times t�200. We note that this time is approxi-
mately on the order of �R2 /D1,2. Thus Eqs. �12�, �16�, and
�17� are invalid at early times t�R2 /D1,2 and when the re-
actants’ diffusion coefficients are small, i.e., in the diffusion-
controlled regime. �No such discrepancies were found for the
concentration profiles for �=1.� Of course, the theoretical
model still correctly predicts the long-time steady-state value

TABLE II. Rate constants, diffusion coefficients, and other parameters in dimensionless units used in
simulating Eq. �19�.

rf rb D1 D2 R � Nx Ny 	t

1 0.1 2.5�10−6 2.5�10−6 0.01 0.1 100 100 10−3
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for the concentrations. Nevertheless, transient behaviors may
have kinetic consequences, especially when the reactions are
cascaded, as is frequently the case in intracellular signaling
pathways. Thus whatever happens at early times upstream
may be propagated downstream at later times. In scenarios in
which these effects are anticipated to be important, it is sug-
gested that our hybrid algorithm explicitly includes diffusive
processes be used.

B. Scaffold proteins in intracellular signaling pathways

In this section, we use the hybrid algorithm to study the
role of scaffold proteins in signal transduction. In particular,

we focus on a model of the mitogen-activated protein kinases
�MAPK�, which are activated by a protein kinase cascade
mechanism in which the MAPK is phosphorylated and acti-
vated by a MAP-kinase-kinase �MAPKK� that is, in turn,
phosphorylated and activated by a MAP-kinase-kinase-
kinase �MAPKKK� �39–41�. The cascade reactions occur in
the cytosol resulting in the activated MAPK phosphorylating
various targets in the cytosol and the nucleus. The protein
kinases are evolutionary conserved features present in a va-
riety of receptor-mediated signaling pathways in eukaryotic
organisms from yeast to humans. In yeast �S. cerevisiae� the
MAPK cascade acts in three distinct signaling pathways
�39,41�: a pheromone sensing pathway, a pathway that moni-
tors extracellular osmotic conditions, and a nutrient-sensitive
pathway that converts individual yeast cells into a connected
filamentous form. While these pathways may share some
identical members, nevertheless specificity is normally faith-
fully maintained. It has been established experimentally that
pathway specificity can be maintained by the presence of
scaffold proteins. For example, seminal experiments on the
yeast mating pathway have established that scaffold proteins
�such as Ste5� are indeed physiologically relevant to the
regulation of MAPK modules �42�. When the Ste5 scaffold
protein is present, the Fus3 kinase �MAPK�, the Ste7 kinase
�MAPKK�, and the Ste11 kinase �MAPKKK� are recruited to
the scaffold. Signals then propagate down the MAPK cas-
cade triggering pheromones resulting in a mating response.
When Ste5 is absent, signal propagation is inhibited and con-
sequently pheromones cannot induce mating. In addition, it
has also been shown through the creation of artificial scaf-
fold proteins that the latter can enable signal transmission
through a MAPK module �43�.

One of the consequences of scaffold protein maintaining
pathway specificity is the precise regulation of MAPK sig-
naling, i.e., scaffold proteins prevent the activation of MAPK
modules by irrelevant stimuli as well as providing spatial and
temporal control of MAPK signaling. However, it is unclear
what other roles, if any scaffold proteins play. As such, ex-
ploring the roles of scaffold proteins in addition to maintain-
ing pathway specificity is still an active area of research �40�.
In addition to experimental investigations, there have been
several computational studies on scaffold proteins �44,45� in
recent years to try to uncover possible new roles in the signal
transduction process. These computational studies have
yielded two important insights concerning scaffolds. First,
scaffolds amplify the signaling, i.e., it results in a larger frac-
tion of the MAPK being activated, but only for a range of
scaffold concentrations. Second, scaffolds make the cascade
less sensitive to fluctuations within the cellular environment,
in the sense that the dosage-response �or input stimulus vs
output activity� curve is more graded and less sharp.

We use the hybrid algorithm to explore the first of these
two issues in more detail, namely, the amplification of sig-
naling activity by scaffold proteins. Our contribution lies in
the fact that our model explicitly takes into account species
diffusion and stochasticity. Diffusion is especially crucial for
accurate modeling because the formation of scaffold com-
plexes is likely to be diffusion-controlled, given the large
masses typical of scaffold proteins and hence their low dif-
fusion coefficient. However, rather than study a specific sys-

FIG. 7. Snapshots of the mean spatial distribution of the dimer
	X3�x ,y , t�
 for 0�x�1, 0�y�1 and at times t=1, 10, 25, and 50
and subject to the reaction-diffusion process of Eq. �19� in the text
with parameters listed in Table II. The angle brackets 	·
 denote
averaging over 100 sets of simulations started with different random
seeds.

FIG. 8. Concentration of species X3 vs time t generated from our
hybrid simulations, Eq. �19�, and from the theoretical model, Eqs.
�12�, �16�, and �17�, for two values of �=0.1 and �=1. The param-
eters used are shown in Table II. The profiles generated from our
model are averaged over 100 sets of simulations started with differ-
ent random seeds.
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tem, we choose to model a generic scaffold complex in a
generic MAPK phosphorylation cycle, namely the model
proposed by Goldbeter and Koshland �46�. This model com-
prises a kinase species K and a kinase-kinase species E. The
kinase-kinase molecules catalyze the phosphorylation of the
kinase molecules K into their active configuration K*. There
are also phosphatases P that catalyze the dephosphorylation
of the active kinase molecules into their inactive form. The
scaffold proteins F can recruit and bind to both the kinase K
�of the inactive form� and the kinase-kinase E, when either or
both of the latter happen to have diffused to within an en-
counter distance. We assume that trimolecular encounters are
rare, and are represented by two bimolecular encounters, i.e.,
the scaffold F can bind to K �or E� to form an intermediate
scaffold complex, and then this intermediate scaffold com-
plex can bind to E �or K�. Once both the kinase K and
kinase-kinase E molecule are recruited to the scaffold, the
catalysis of the kinase K to its active form K* occurs. Upon
activation, the scaffold complex breaks up and K* and E
diffuse away.

In summary, our model comprises the following reactions:

K + E�
k12

k11

I1 ——→
k13

K* + E , �20�

K* + P�
k22

k21

I2 ——→
k23

K + P , �21�

F + K�
k32

k31

C1, �22�

C1 + E�
k42

k41

C2 ——→
k43

F + K* + E , �23�

F + E�
k52

k51

C3, �24�

K + C3�
k62

k61

C2 ——→
k63

F + K* + E . �25�

The kinase molecules K and K* are diffusing with a diffusion
coefficient of DK. Similarly, the kinase-kinase molecules and
the phosphatases have diffusion coefficients DE and DP, re-
spectively. The intermediate complexes I1 and I2 have diffu-
sion coefficients DI1

and DI2
, respectively. �Note that all dif-

fusion coefficients are assumed to be constant in this paper.�
We assume that the scaffold proteins have a molecular
weight that is very large compared to the other species, and
so, do not diffuse. Thus the scaffold proteins F and the scaf-
fold complexes C1 to C3 have diffusion coefficients of zero.
The rate constants and diffusion coefficients used in simulat-
ing the model are summarized in Table III. We have found
that our results are still qualitatively valid for a wide range of
rate constants and diffusion coefficients.

Initially, the kinases, kinase-kinases, phosphatases, and
scaffolds are randomly distributed on the spatial mesh. In
Fig. 9, we plot the time course of the total kinase phospho-
rylation activity ��t� over the whole mesh, which is the frac-

tion of kinase molecules in the mesh that are in the phospho-
rylated form at time t, for several values of the scaffold-to-
kinase concentration ratio f . We see that the addition of
scaffolds, f �0, can either increase or decrease the steady-
state activity.

This is shown more clearly in Fig. 10, which plots the
relative change of the activity,

	��f� =
��f� − ��f = 0�

��f = 0�
, �26�

as a function of the scaffold-to-kinase concentration ratio f .
It is seen that the steady-state activity can be amplified by up
to approximately 20% when there are as many scaffolds as
there are kinases �f =1�. However, the further increase of
scaffolds causes the steady-state activity to eventually de-
crease. Finally, when there are approximately 50 times more
scaffolds than kinases, the steady-state activity is almost
zero, i.e., there are almost no phosphorylation events.

TABLE III. Rate constants and diffusion coefficients in dimen-
sionless units used in simulating Eqs. �20�–�25�.

i ki1 ki2 ki3

1 0.4167 150 600

2 0.4167 150 600

3 4.167 60

4 2.0835 150 600

5 4.167 60

6 2.0835 150 600

Dk DE, DP DI1
, DI2

1 0.33 0.28

Nx Ny 	t �

10 10 10−3 10−3

FIG. 9. Kinase phosphorylation activity � summed over the
whole spatial mesh vs time t for several values of the scaffold-
kinase concentration ratio f . In the absence of scaffold proteins �f
=0�, the activity achieves a steady-state value of �=0.5. However,
the addition of scaffold proteins can either increase �dashed line� or
decrease �dotted line� the steady-state activity.
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The existence of an optimal range of scaffold concentra-
tions 10−2� f �5 for which the steady-state kinase activity is
enhanced was first observed by Levchenko et al. �45�. How-
ever, their model, though quantitative, does not account for
spatial diffusion and is deterministic. Here, with information
on the spatial distribution of the proteins available, we ex-
plain how this optimal range of scaffold concentration arises.
At low scaffold concentrations, the number of scaffold-
bound kinases is small compared to the number of freely
diffusing kinases. As the scaffold concentration increases,
this ratio of scaffold-bound-to-free kinases increases, and
eventually, all kinases will be scaffold-bound. The same is
also true of the ratio of scaffold-bound-to-free kinase-
kinases. Thus we can compute a “utilization ratio,” �K,
which measures the ratio of bound-to-free kinases, and it
increases monotonically with scaffold concentration. How-
ever, at low scaffold concentrations, the number of bound
scaffolds is large compared to the number of free scaffolds.
As the scaffold concentration increases, this ratio of bound-
to-free scaffolds will decrease, simply because there will not
be enough kinases to recruit. Thus we can compute another
“utilization ratio,” �F, which measures the ratio of bound-to-
free scaffolds. It decreases monotonically with scaffold con-
centration. These two ratios are plotted in Fig. 11. Their
product, �KF, then exhibits a peak centered at around f �1.
Thus the optimal range of scaffold concentration for ampli-
fying steady-state activity is attained, not when either the
kinases or scaffolds are separately optimally “utilized,” but
when both the kinases and scaffolds are equally “utilized,”
i.e., when the ratio of bound-to-free kinases and the ratio of
bound-to-free scaffolds are equal.

The results in this section highlight how scaffold proteins
in conjunction with environmental factors such as stochastic-
ity and diffusion can influence signal transduction by modi-
fying the activity levels of the signaling process.

IV. CONCLUSIONS

In this paper, we have argued why models for intracellular
signaling pathways based on a deterministic approach that
has as its basis, a well-stirred homogeneous environment, are

inadequate for in vivo conditions. The main limitations are
fluctuations that arise due to the small number of some of the
signaling components and the heterogeneity of the structur-
ally organized intracellular environment. We then discussed
how stochastic reaction-diffusion processes may be used to
overcome these limitations so as to model realistically bio-
chemical processes that couple reaction with diffusion. We
described a hybrid algorithm that can be used to solve these
processes efficiently that is very easy to implement. A key
feature of the hybrid algorithm is that the user chooses the
degree of hybridization to use by specifying a threshold pa-
rameter for the set of propensities. Those processes whose
propensities fall below this threshold will be solved by a
stochastic approach �accurate but not necessarily efficient�
whereas those processes whose propensities are above this
threshold will be solved by a deterministic approach �effi-
cient but not necessarily accurate�. We also quantified the
accuracy and efficiency of our hybrid algorithm by showing
how the errors in the mean and variance of species concen-
trations scale vary with the threshold parameter. We then
applied the hybrid algorithm to study two problems. First, we
showed that the theoretical model of diffusion-controlled re-
actions is not valid at early times when the reactants’ diffu-
sion coefficients are small. Second, we showed how scaffold
proteins can modify the steady-state activity of kinase phos-
phorylation, and quantified this modification by studying
scaffold and kinase utilizations. We are currently applying
the computational framework developed and described in
this paper to model signal transduction in the Wnt signaling
pathway �47� to study the role of stochasticity and heteroge-
neity in modulating signaling in this pathway which is criti-
cal in development biology and tumorgenesis.
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APPENDIX A: IMPLEMENTATION OF ALGORITHM

A pseudocode outline of the algorithm is as follows. The

set of concentrations X� �t� was defined in Eq. �3�. The set of

reaction-diffusion process R� and the set of propensities a��t�
were defined in Eqs. �5� and �6�, respectively. The set of
processes belonging to the small-propensity-subset will be

denoted by R� S�t� and their propensities a�S�t�; the set of pro-
cesses belonging to the large-propensity-subset will be de-

noted by R� L�t� and their propensities a�L�t�. �Note that R� S and

R� L depend on time t, but their union, R� , does not.�

�1� initialize and set t=0
�2� while �t�T� do

�3� a��t�=calculatePropensities�R� ,X� �t��
�4� �R� S�t� ,a�S�t� ,R� L�t� ,a�L�t��=partition�R� ,a��t� ,��
�5� �=calculateTau�a�S�t��
�6� if �	t��� do
�7� t0= t
�8� while �t� t0+�� do

�9� X� �t+	t�=solveDeterministic�R� L�t� ,X� �t��
�10� a��t�=calculatePropensities�R� S�t� ,X� �t��
�11� �=calculateTau�a�S�t��
�12� t= t+	t
�13� end while

�14� X� �t+��=solveStochastic�R� S�t� ,X� �t��
�15� else

�16� X� �t+��=solveDeterministic�R� �t� ,X� �t��
�17� t= t+�
�18� end if
�19� end while

The initialize subroutine sets up the algorithm by
reading the input specifications of the pathway to be mod-
eled, which is given in the SBML format �48�. In addition,
the other parameters such as Nx, Ny, and �, as well as initial
concentrations for the species, are specified. The discretiza-
tion of the spatial mesh and the population of species are also
carried out.

The calculatePropensities subroutine computes
the propensity functions as described above for the set of
processes passed into it. The partition subroutine carries

out the partitioning of R� into R� S�t� and R� L�t� as described
above. The calculateTau subroutine takes the propensi-
ties for the processes in the small-propensity-subset and se-
lects a time value � randomly which is the time that one of
these processes will occur �17�. As can be seen from the
pseudocode, � is calculated within the while loop of lines
�8�–�13�, i.e., it is updated after every deterministic time
step. This is necessary because some of the species that par-
ticipate in reactions partitioned into the large-propensity-
subset may also be involved in the small-propensity-subset
of reactions and hence contribute to the calculation of �. To

make the recalculation of � efficient, we follow the method
of Gibson and Bruck �49� and have stored, in the initial-
ize subroutine, a dependency graph that specifies which
reactions will modify which propensity. Note that this depen-
dency graph is not modified as the code runs. Thus in the
calculatePropensities subroutine, only those pro-
pensities that need to be modified are updated. This results in
an efficient way to evaluate �. From time t up to time t+�, no
other events from the small-propensity-subset will occur.
However, in this same time interval, the processes in the
large-propensity-subset will have to be updated. This is
handled by the solveDeterministic subroutine, which
solves the processes in the large-propensity-subset in time
steps of 	t��. At the end of each time step 	t, the propen-
sities for the processes in the small-propensity-subset are re-
evaluated and the value of � is updated with these new pro-
pensities. This update helps to reduce errors that will be
discussed later.

The solveDeterministic subroutine updates the
processes in the large-propensity-subset deterministically. It
rewrites the processes as differential equations, which is
most generally the reaction-diffusion equations,

�Xi�r�,t�
�t

= �
j=1

J

� jiaj�X1, . . . ,XN� + Di��
2Xi, �A1�

where j=1, . . . ,J with J the number of processes in the
large-propensity-subset. There are many techniques to solve
Eq. �A1� numerically, and we have chosen to use a simple
technique, the forward-time and centered-space discretiza-
tion method. It discretizes time using the forward Euler
scheme and discretizes space using the central difference
scheme �50�. Using this scheme, Eq. �A1� becomes

Xi�x,y,t + 	t� − Xi�x,y,t�
	t

= �
j=1

J

� jiaj�X1�x,y,t�, . . . ,XN�x,y,t��

+ Di
Xi�x + 1,y,t� − 2Xi�x,y,t� + Xi�x − 1,y,t�

Nx
−2

+ Di
Xi�x,y + 1,t� − 2Xi�x,y,t� + Xi�x,y − 1,t�

Ny
−2 .

�A2�

Thus X� �x ,y , t+	t� is completely determined by X� �x ,y , t�.
The choice of the time step 	t will have to guarantee stabil-
ity and convergence �50�.

The solveStochastic subroutine simply chooses one
of the processes in the small-propensity-subset randomly

�17�, and updates the concentration X� at time t+� based on
the values of the stoichiometric matrix.

APPENDIX B: SOURCES OF ERROR

Since our hybrid algorithm is, after all, an approximate
one, the species concentrations will contain errors �except of
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course when �=0 or 1, in which case the algorithm repro-
duces the exact deterministic or stochastic solutions, respec-
tively�.

One source of error occurs when a jump �i.e., diffusion�
process is sorted into the large-propensity-subset to be solved
deterministically. Recall that a jump process is a local one
involving only two mesh points. However, solving diffusion
deterministically is, by definition, a global procedure involv-
ing every mesh point in the modeling domain �. For ex-
ample, consider the following scenario: At time t, a jump
process for a particular species at mesh point �x1 ,y1� is being
sorted into the large-propensity-subset, while a jump process
for the same species at another mesh point �x2 ,y2� is being
sorted into the small-propensity-subset. Thus from time t to
t+�, diffusion of the species will be solved deterministically
for all mesh points. At time t+�, the jump process at �x2 ,y2�
is chosen as the stochastic event to be updated. The species
concentration at �x2 ,y2� will thus be “doubly updated” at
time t+�.

Another source of error occurs when a particular species
is involved in reactions that are being sorted into both the
large-propensity-subset and the small-propensity-subset. It
may happen that, by the time the reaction in the small-
propensity-subset is to be updated stochastically, the species
concentration will have already been modified by the reac-
tion in the large-propensity-subset to such an extent that the
time at which the stochastic process will take place �� gen-
erated in line �5� of the pseudocode� will be inaccurate. This
is overcome by recalculating � after every deterministic up-

date in lines �10� and �11� of the pseudocode.
Finally, a third source of error occurs when the concen-

tration of a particular species, previously solved by a deter-
ministic approach, now has to be solved by a stochastic ap-
proach. This can happen when the propensity for the process
involving this species changes to an extent that it becomes
repartitioned from the large-propensity-subset to the small-
propensity-subset. Thus one has to “connect” a deterministic
solution to a stochastic solution. This is a problem when the
solveStochastic subroutine takes as input, say, a non-
integer concentration value of, say, 3.14 for the species that
is to be updated. One solution to overcome this error is to
simply round off the concentrations �so that 3.14 becomes 3
and 2.72 becomes 3� prior to calling solveStochastic.
Thus line �14� of the pseudocode can be replaced by

�14� X� �t� = solveStochastic�RS
� �t�,NINT�X� �t���

with NINT�·� denoting the rounding-off function. However,
this solution is not ideal because it is possible that the errors
due to the rounding-off may accumulate and grow with time
�20�. An alternate solution is to adopt a “random-rounding”
approach such as that used by Bhalla �26� whereby a nonin-
teger concentration value is randomly rounded up or down to
the nearest integer. In our algorithm, we did not implement
any rounding operations. We decided to preserve the law of
mass conservation and speak of, say, 3.14 molecules even
though the statement is meaningless. Nevertheless, we view
this as a side effect of a hybrid algorithm that is approximate.
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